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Abstract--Tracer experiments are a valuable tool in the study of transport phenomena. Most of the 
theoretical work about tracers has been concerned either with systems having clearly defined inlet and outlet 
or with recirculating flows. In this article the methods are generalized to more complex situations and an 
attempt is made to provide a uniform theoretical treatment for local tracer experiments performed at several 
sites inside the flow systems. Local purging rate and mixing rate are defined and their measurements and 
applications are discussed. Several sojourn time distributions are discussed, especially that of local remaining 
life which might be useful in the study of local processes in large flow systems. The results should be of 
interest in a wide variety of areas in which tracer experiments are used, such as chemical reactor design, 
physiology, hydrology and the study of dispersion processes in the atmosphere and in oceans. 

1. I N T R O D U C T I O N  

The use of tracers for investigating flow systems, especially in the fields of water physiology and 
coastal pollution, has become more and more frequent in recent years. The appearance of 
new tracers and the development of more sensitive methods of detection imply even more 
extensive use in the future. Tracer methods are used for various purposes: determination of the 
physical parameters of systems, e.g. flow rates (Clayton & Smith 1963; Dinger 1967); diffusion, 
dispersion and dilution coefficients (Selleck & Pearson 1961; Harleman et al. 1966; Harremoes 
1966; Barrett et al. 1969; Okubo & Pritchard 1969); reaeration coefficients (Tsivoglou et al. 1968); 
justification of analytical methods (O'Connor 1962, 1966); modelling of flow systems (Ingram et 

al. 1966); and tracing of sand transport in coastal waters (Duane 1970). 
Most of the theoretical framework developed for tracer experiments in the different 

disciplines have dealt with some special types of open systems, which have one clearly defined 
inlet and outlet (Zierler 1962; Aris 1966). Some aspects of the theory of tracers for more general 
systems were investigated by Hart (1960) and Bergner (1961). Naor, Shinnar & Katz (1963, 1967, 
1972a,b), outlined the method of regarding the behavior of tracers as stochastic processes and also 
demonstrated the equivalence of diffusional and compartmental models. 

The main use of tracer experiments in flow systems is to evaluate some parameters of a model 
representing the system. Therefore, the results are usually strongly dependent on the model 
chosen. For example, Obrist et al. (1967) reported a considerable difference between the 
descriptions of cerebral blood flow by two and three-compartment models. Moreover, several 
tracer experiments can yield global model-free parameters of flow systems. Consider, for 
example, a system with a single inlet and a single outlet. It is well known that by an experiment of 
inserting tracer in the inlet and measurement of the resulting concentration at the outlet, the flow 
rate can be determined quite accurately. In principle, the volume of the system can be calculated 
from the first moment of the concentration vs time curve. However, the error involved in this 
calculation can be rather large, and furthermore, the volume computed from this experiment is of 
the active (flushed) part of the system, while stagnant regions can hardly be detected. Local 
properties of the system can be determined by the existing tracer methods only on the basis of 
diffusional or compartmental models. The errors in the evaluation of local parameters are mostl~ 
larger, e.g. when the diffusion coefficient in a one-dimensional single inlet-single outlet system is 
determined by the second moment of the concentration vs time curve. 
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In systems with multiple inlets and outlets the problem is even more difficult. There does not 
exist any definition of a local flow rate which would describe the local flow situation. Velocity 
profiles can answer the problem but these are usually hard (or expensive) to obtain. 

The purpose of the present work is to develop a more general approach for the interpretation 

of tracer experiments in the study of transport processes in flow systems with multiple inlets and 
outlets. A method for the description of these processes is suggested, based on the definition of 

local model free parameters--the purging rate (section 3), the mixing rate and the equivalent 
Peclet number (section 4) and local sojourn time distributions such as the remaining life 
distribution (section 5). These parameters can be determined directly from tracer measurements, 
without resorting to any model. Their values and especially their spatial distributions in the 
system describe the nature of the mixing and purging (or flushing) processes in the system. 

We discuss experiments in which tracer is introduced at some points within the system and 
the resulting concentration histories are measured at the same points and other sites. It is 

assumed that the system is steady, or if there are turbulent transport processes, the average local 
tracer responses are steady. 

Compartmental analysis is used for the definition of the above-mentioned model free 
parameters. However, this is not a limitation and we do not assume that the system really consists 
of stirred tanks. The model free parameters defined in this work are general and not restricted to 
any system or any model which represents it. These parameters are directly determined by the 
tracer measurements. Indeed, Shinnar & Naor (1967) showed that the continuous (diffusional) 
behavior can be obtained from the compartmental model when the number of compartments 
tends to infinity. In section 6, an example of a two-phase flow is treated by both models and their 
equivalence is shown on the basis of the model free parameters. 

2. G E N E R A L  T R A C E R  E X P E R I M E N T S  

The behavior of a general flow system is described here on the basis of compartmental 
analysis and probability theory. The system can be represented by the set of transition 
probabilities, which are directly related to the concentration histories of tracer material 
introduced into the system. It is assumed that the system is in steady state and the compartments 

have constant volumes. Generalizations to other situations are available to some part (Hart 1960). 
Consider a network consisting of n compartments (or vessels), having volumes 1/",. W,j is the 

flow rate from vessel i to j, W~" and W/are the outflow and inflow rates for vessel i, respectively. 

Denote: 

W. = - ~ .  W~j-W~ ~ i , j  = 1 , 2  . . . . .  n .  [11 

Then by definition: 

and by material balance: 

W,j = - IV, ~, [ 2 ]  
i 

w,j = - w / .  [3 ]  
i 

Denote, further, the modified flow rates by: 

w,j =- WdV,;  w; =- W;/V,;  w/=- W//V,.  [4] 

Denote the transition probability from vessel i to j by p,j(t) and from i to the outlet of j by pTi(t) 
where t is the time. 
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The transition probabilities are directly related to the concentrations of the tracer material in 
the various vessels: inject an amount m of tracer in vessel i as a pulse at t = 0 and measure the 

concentration of the tracer material cs(t) at vessel j. The transition probability is simply the ratio 
of the amounts of tracer material: 

p,j( t)  - c i ( t ) V i  [5] 
m 

It is noted that the same results can be obtained from the step experiment, in which tracer is 

injected at a constant rate. 
We further assume that for single molecules the processes can be considered as Markovian; 

this is no real limitation on the applicability of the results as explained by Bergner (1961) and 
Krambeck et al. (1969a, b). Thus the governing equations for transition probabilities are either 

the "backward" equations: 

dp~ _ 
- ~ w,kpkj i, j, k = 1, 2 . . . . .  n [6] 

d-T 

e dp i___j = ~ , , 
dt  wikp kj + wi 8ij [7] 

which are obtained by material balance of vessel i, or the "forward" equations: 

dp0 _ 
- ~ p,kwkj [8] 

d---~- 

dp,~ e 
dt = p,jw~ [9] 

which can be obtained by material balance of vessel j. The initial conditions are: 

p~O, = 8,j i, j = 1,2 . . . . .  n [101 

p ,~(0) = 0 [11] 

where 8~j is the Kroenecker 8. 
Several relationships can be derived from the equations before solving them. In particular, we 

are interested in the following one: 

W /  fo ~ p,i( t)  d t  ~- VI [12] 

which is obtained from [3], [5] and [6]. This relationship will be used in the next section for the 
definition of the purging rate. 

The solution for [6] or [8] with the initial conditions [10] is given by: 

p , s ( t ) = ~ ' ~ A ~ e  xk' i , j , k = l , 2  . . . . .  n [13] 
k 

where hk are the eigenvalues of the matrix w = (w,j) and the coefficients A,~ are given by: 

A ~ = S,kR~ k [14] 
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where S ~ and R k are the row and column eigenvectors of w, given by: 

w ' S  k ----AkS k; R k "W=AER k. [15] 

The eigenvalues Ak may be complex, but it has been established by Hearon (1963) that for all 
physically realizable cases, when the flow rates w~j (i ~ j) are non-negative, Ak have negative real 
parts. When there are repeated values of the eigenvalues, the solution [13] has to be modified, cf. 

Hearon (1963). 
The transition probabilities p~ can be determined by tracer experiments of injecting the tracer 

in vessel i and measuring the concentration history at vessel j. Obviously, all the elements of the 
matrix p of the transition probabilities can be determined by n 2 measurements, and then all the 

elements of the matrix w can be calculated, cf. Hart (1963). In principle, however, as shown in 
Appendix A, only n measurements are necessary to determine all the flow rates of the network, if 

the geometry (the volumes) of the system is known. 
As mentioned above, tracer experiments are often used for the evaluation of model 

parameters, The identification of the eigenvalues Ak can be done, for example, by "peeling" the 
exponentials [13] of measured concentration curves, starting from the tail which is dominated by 
the first (smallest absolute value) eigenvalue, cf. Obrist et al. (1967). This method is generally 

inaccurate because it relies on the tail, where the concentration is small and hard to detect and 
also because the experiment is truncated after a finite time. Moreover, it will fail when the 
number of vessels is large and especially when the eigenvalues are complex numbers as in cases 

of recirculation. 
Another method is the direct estimation of the flow rates from the concentration 

measurements, using [6] or [8]. Values of the transition probabilities from [5] and their time 
derivatives are introduced into these equations, yielding a set of linear algebraic equations for the 
flow rates. The number of equations must not be smaller than the number of unknown flow rates. 
However, a large number of equations, i.e. from several times, can be set and the solution then 
can be made using variational methods, such as that of the least squares, cf. Graupe (1972). 

As mentioned above, the compartmental analysis is not used in this work for the identification 
of model parameters. It is used in the following sections for the definitions of the model free 
parameters--purging rate, equivalent Peclet number and several sojourn time distributions. 

3. THE LOCAL PURGING RATE 

The local flow conditions in a system can be described on the basis of a compartmental model. 
In order to determine the model parameters by tracer experiments, measurements (or injections) 
of the tracer are required in all regions of the system, as shown in the previous section. The same 
is also true for diffusional models representing non-uniform systems. One is then tempted to 
search for some simpler local flow properties that can be both defined and measured on a local 
scale. A parameter suitable for this purpose is the local purging rate, defined below. 

Let us start with a system having a single inlet. The inflow rate W ~ can be directly determined 

by introducing tracer in the inlet and measuring the concentration at any point within the system: 

WI= 

[ ~  c~--~) dt 

step experiment 

pulse experiment 
[161 

where m is the amount of tracer injected in a pulse experiment and q is the rate of tracer input in 
a step experiment. 

We note that the flow rate measured by this type of experiment refers to the inflow only and 
not to any internal local properties, not even at the measuring point. The same is true if there is a 
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single outlet and several inlets. We can inject the tracer then at any point in the system; if we 
measure the concentration cc(t) at the outlet, [ 161 gives the correct outflow rate. The accuracy of 
the measurement depends (and often very significantly) on the injection (or measuring) point. 
Thus, measuring (or injecting) in a stagnant region yields the same value of c(m) for a step 
experiment, but the time needed to reach c (00) is longer. Here, however, we are looking for a flow 
rate which is a local property and will enable us to distinguish between well purged and stagnant 
regions. Consider a pulse or a step experiment, in which tracer is introduced into vessel j and the 
resulting concentration history in this vessel cj(t) is measured. We define the purging rate Uj at 
vessel j by: 

[I71 

As will be shown later, the purging rate Uj represents the total net rate at which particles present 
at vessel j are transported towards the outlets. The generalization to a continuous system is 
obvious: the purging rate is given by [ 171 where j simply denotes any point within the system. 

Let us now show that the purging rate defined by [17] is a true local property, which is 
model-free and is independent of the details of the tracer experiment. 

For a pulse experiment, it follows from [17] and [5] that: 

I 
cc 

Uj = Vi/ Pjj(t) dt. [la 0 

It is shown in appendix B that the probability Pii of a particle at i to pass through j is given 
by: 

J’ij =~p,j(f)df/~Pi,(t)df . [I91 

Introducing [19] into [12] and using [18], the following relation is obtained for the purging rate: 

PO1 

Thus Uj is the fraction of the total flow through the system which passes at vessel j on its way to 
the outlets. In a similar way, it can be shown that: 

WI 

where Qji is the probability that a particle at i has passed (at least once) through j. 
Finally, from [18], [19] and [12] the following expression for the purging rate is obtained: 

ml 

The last form can be employed to measure the purging rate from an i to j tracer experiment, 
when Pii is known. This can be useful for a system with a single outlet, where the measuring point 
j is on the way to the outlet and Pij = 1. 
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The purging rate depends on both convection and diffusion in a local region, and it also 
includes information about the connection of the region to the other parts of the system. Thus, 
for example, the purging rate is small for a region with strong local mixing, which is weakly 
connected to the other regions. Such a region is stagnant, and this can easily be detected by an 

appropriate tracer experiment, and measurement of the purging rate by [17] or [19]. Theoretically, 
the same information can be obtained from an inlet-to-outlet experiment; however, in that case 
the information is contained in the tail of the concentration curve. Moreover, since the 
measurement is truncated at a finite time, any information based on the tail is inaccurate in most 

cases. 
Another significance of the purging rate can be observed from [18]. Consider the probability 

density 7rjj(t) that a particle is in vessel j at the time interval between t and t + dr: 

p j i ( t )  
7r,, - f o  p j j (  t ) d t  " [23] 

Uj is related to 7rjj(t) just as the inflow rate W s relates the average residence time distribution i- 

and the volume V of a single inlet-single outlet system: 

W'  = W" = W = V.  [24] 
t 

This property of the purging rate is discussed further in section 5. 

As an application for the use of the purging rate[17], consider the well known method of 
checking the functioning of the liver. A solution of indocyanine green is injected at a constant rate 
into an artery and the resulting steady state concentration is measured at the same site, c.f. 

Bassingthwaighte (1974). The measurement gives the local purging rate i.e. the rate at which the 
indocyanine green is transported from the site of injection to the liver and excreted there. Actually 
this test is not intended to measure the local property (at the artery), but the excretion through the 

Table 1. Printout of peak counts/sec and time 
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63 
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A portion of the computer output depicting the peak counts/sec recorded by each crystal (top number) 
and the number of seconds after the start of the study when peak counts/sec occurred in each crystal is 
presented. The peak counts/sec were higher and occurred sooner in crystals overlying myocardium than in 
those overlying the lungs. From Cannon et al. (1972). 
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liver. The reason that these two are almost equivalent is due to the fact that the mixing in the large 

circulation is much faster than the rate of excretion. A different result would be obtained from an 

injection in a stagnant vein. The local purging rate in that case will reflect the local transport 

phenomenon and not the operation of the liver. 
Another way of measuring the purging rate, according to [20] can be applied to the results of 

Cannon et al. (1972). They investigated regional myocardial perfusion rates in humans, using 
injection of '33Xe at the inlet and measuring the resulting regional activities by a scintillation 

camera. The area beneath any activity versus time curve would give the same value, which is 
proportional to the inflow rate and is not a local property. Cannon et al. noticed that the peak counts 
per minute occured rather quickly and after approximately the same time for the whole 

myocardium (see table 1). This suggests that the system can be considered as consisting of many 

/ 

o o 

6o~- _ '~ : . . .  

,'o°( , , , 
7- ioo~, 

6ol- . '~" 
~ 70t  ~ . CRYSTAL 15:5 

60 I- 

,o r - ~ . .  

I I I 

TIME (see) 

Figure I. Two semilogarithmic plots of myocardial '33Xe activity (cps/peak cps against time) are depicted. 
These were obtained by two crystals in one patient• The patient had coronary artery disease; one crystal 
overlay myocardium supplied by a normal vessel (bottom); The other (top) was over tissue supplied by a 

narrowed branch of the left coronary. From Cannon et al. (1972). 

0.8~ 8 0'63 0"97 0"46 

• ~ i ~ 6  ~ 

• 1.47 I.&$ 1.54 ~1- 7 1.50 

1"17 ~,33 I 27 1'62 1'78 1.54 

Figure 2. A computer printout of the slopes of the 48 myocardial '3~Xe washout curves obtained after a single 
left coronary injection in patient H. W. is shown (A-P projection). From Cannon et al. (1972). 
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compartments connected separately to a main stream of strong plug flow. Cannon et al. Computed 
regional peffusion rates from the slopes of single exponential decay curves, fitted to the 
experimental measurements (by a least squares procedure), see figures 1 and 2. This method is 
similar to the washout curve measurement. 

The same results can be obtained directly by measuring the areas beneath the concentration 

curves normalized by the peak concentration. These will immediately give the local purging rates 
and thus the numerical procedure of fitting the curves becomes unnecessary. The spatial variation 
of the purging rate indicates the functioning of the various regions, as explained above. 

4. THE L O C A L  MIXING RATE AND THE E Q U I V A L E N T  P E C L E T  N U M B E R  

Another desired local parameter would be the local mixing rate, or the rate at which vessel j 

interchanges fluids with its surroundings. For a given network of stirred tanks the obvious 
definition of this rate is the turnover rate suggested by Bergner (1961) 

T~ = - W .  = ~ W,j + W L  [25] 

There are two disadvantages in choosing this definition. First, T, is not directly measurable. In 
order to determine it, measurements at i and several neighboring regions are needed and T~ is 
then calculated on the basis of some model, at least for the vicinity of i. Moreover, the turnover 
rate increases and tends to infinity when the number of vessels is increased to approach the 
description of the continuous systems. 

The latter difficulty can be avoided by defining an equivalent Peclet number which will tend to 

a finite value for continuous systems. However,  the equivalent Peclet number also cannot be 
measured directly. 

When modelling a complex flow, the network that represents it is not unique. For high 
accuracy we would need a very large number of vessels, but for practical purposes we can have 
good approximations with quite a small number. Consider the case where the flow is one 
dimensional with a net flow rate W, a diffusion coefficient D and a constant cross-section A. The 

system can be described by the diffusion equation: 

Oc W Oc 02c 
05 + A- ~xx - D ~ = 0 [26] 

with boundary and initial conditions: 

~-cW _DaC=00x a t x = 0 ,  [27a] 

Oc 
Ox 0 a tx  = L ,  [27b] 

c -- 0 at t = 0. [27c] 

This flow can be approximated for all practical purposes by a cascade of stirred tanks (figure 
3) with forward and backward flows as long as the number of stirred tanks is larger than half the 
Peclet number WL/DA. Even if we take a cascade of n = WL/2DA stirred tanks with forward 
flows only the approximation will be sufficient for most purposes. For n = WL [2DA the turnover 
rate will be W t, but as n increases the turnover rate approaches infinity. What we are looking for 
is a local Peclet number related to the turnover rate in such a way that models with similar overall 
properties will have local Peclet numbers which are not sensitive to the number of tanks used. 

For the cascade shown in figure 3, it will be shown that the following expression: 

2 V W  l -~r  
- -  2 n  [28] P~- V~ T~-  l+Tr  
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w W 
= m 

f e 

Figure 3. A cascade of stirred tanks representing a one-dimensional flow with back-mixing. 

where V is the total volume of the system and 

7r = w: / (w2  + w ) ,  

fulfills these conditions very well. Equation [28] defines as an equivalent Peclet number the ratio 

of the net flow rate (equal in this case to the purging rate) to the turnover rate normalized by the 
ratio of the local volume to the total volume. The factor 2 will be explained later. As n ~ ~ the 
above model will approach correctly the flow described by [26]-[27] as was shown by Naor & 
Shinnar (1967). While T~ will approach infinity, T,V, remains finite. There are obviously many 
other ways in which we could define such a Peclet number. Thus, Naor & Shinnar (1967) used the 
following definitions 

p '  = n(1 - ~r). [29] 

For large n there is very little difference between the two (as 1 + ~- = 2). For small n it is found 
that the group defined in [28] has some remarkable advantages. As an example, consider the 
coefficient of variation 3': of the residence time distribution given by Naor & Shinnar (1967): 

2 2 1 27r (n - 1 ) -  nTr + It:, 
7 = ~ ' ~ = n  -~ [n(l_Tr)]2 [301 

where 2 is the variance and i- is the average of the distribution (see also section 5 here). In figure 
4, 3, 2 is plotted vs the equivalent Peclet number defined by [29], and in figure 5, as defined by [28]. 

It is noted that for the latter, the variance changes very little over the whole range. Obviously the 
larger n the better the overall fit between the system described by [26]-[27] and the 
compartmental model. But even a rather small n (the smallest n is W L / 2 D A ) ,  gives a very good 
description, and is sufficient for many purposes. 

This desire for a good fit for small n now implies why the factor 2 was introduced in the 
definition [28] for p, 

The Peclet number defined by [28] has another interesting property. Consider for example a 
cascade of five stirred tanks in series with forward flow only, where 7r = 0 and the Peclet number 

I 

y '  

.5 

5 ~o 

I I I 
0 4 12 20 

P'-- (I- "n') n 

Figure 4. The coefficient of variation of the residence time distribution for the system shown in figure 3. From 
Naor & Shinnar (1967). 
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I 

.5 2 

I0 

[ 
0 4 12 2~0 

I - ' r r  
/O=2n - -  

1+71" 

Figure 5. The coefficient of variation of the residence time distribution for the system shown in figure 3. The 
Peclet number is defined as in [28]. 

0 is 10. There is no backflow and, therefore, no flows related to mixing between the vessels. 

However, the fact that a cascade of five vessels can describe the system already indicates a local 

backmixing phenomena represented by the Peclet number. 

Expression [28] was derived for a rather simple case. For more general three-dimensional 

systems we can generalize it by substituting the purging rate for W. Thus, the Peclet number in 
vessel i is defined by: 

2 V U ,  
P ' -  V, T,' [311 

p, is a local property and its spatial distribution in the system gives also an indication about 
the uniformity of the mixing processes. 

The equivalent Peclet number as defined by [31] depends on the model chosen to represent 

the system (or on the compartmentalization). Unlike the purging rate, the turnover rate Ti cannot 

be measured directly. It can be obtained only by several measurements and calculations on the 

basis of some model for the system or at least for the region in question and its surroundings. 

In principle, however, we can overcome this difficulty by the following definition of the Peclet 
number: 

p i=  lim 2VU, 
v,~o Vi Ti" [32] 

As mentioned above, when approaching the limit of an infinite number of vessels, the turnover 

rate increases to infinity, but V,T, remains finite. While the definition [32] can be considered 
model-free, a numerical evaluation of p, requires formidable numerical work, which becomes 

more and more inaccurate as the number n increases, even if we can assume that concentration 

curves are available for the entire system. 
Let us return to the one dimensional diffusional flow system, where we take a model of n 

stirred tanks (figure 3) having equal volumes. When n ~ ~, W, ~ W2 and Ti = 2 W, = 2 W2. It can 
be shown that the mixing rate can be represented then by: 

T~ = 2W,  = 2W2 = 2nDiA[L  

(see also section 6). Equation [32] yields then the following expression for p,: 

U,L 
O, ~-~AO,  [33] 
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which is similar to the "usual" Peclet number. In the simple case described by [26]-[27] and figure 
3, U, = W. In other cases, however, the purging rate is a local property and [33] can be regarded 

as an extension of the definition of the Peclet number. 

5. SOJOURN TIME DISTRIBUTIONS AND ESCAPE PROBABILITIES 

In section 2 we have treated the transition probabilities between different points. These are 
used in this section for the definition of several sojourn time distributions which, similar to the 

residence time distribution, provide some insight to the underlying transport processes in flow 
systems and are more amenable to physical interpretation. We are especially interested in 
sojourn time distributions which can be measured in a direct way without complex computations. 

Let us first consider the system with a single inlet and a single outlet. Introducing an amount m 
of tracer as a pulse at the inlet and measuring the resulting concentration history at the outlet, the 

residence time distribution is directly obtained. The probability density f(t) for residence time t 
is given by: 

ce(t)  
= -~c~(t) [34] f(t)  =fo~ ce(t)dt I f t  

where use was made of [ 16]. The average residence time is related to the volume of the system by: 

fo ~ Wfo~ V t = tf(t) dt = -~ tce(t) dt = ~ .  [35] 

In many cases there is a considerable weight in the tail of the distribution (large values of t), 
where it is difficult to measure f(t). It was already shown by Naor & Shinnar (1963) that the 

information obtained can be considerably improved by additional experiments. Injecting tracer in 
the inlet (f) and measuring at any point i in the system gives the local age distribution a, (t) at i: 

a~(t)  = c1,(t) W I - ci~(t). [36] 
fo cf,(t) dt m 

Similarly, injecting at i and measuring at the outlet e, the remaining life (or the "anti-age") 
distribution is found by: 

c,e(t) W e 
b,(t) = , - c,e(t). [37] 

o C~e(t) dt m 

For systems having more than one inlet or outlet, a residence time distribution cannot be 
defined clearly and has no meaning. Other sojourn time distributions can be used then to 
characterize the system, namely, age and remaining life distributions. These can be defined for 
the entire system (as the distributions for a particle taken at random from the system at large). 
They are more significant, however, as local properties and their spatial distribution can yield 
information about mixing processes and interaction between regions (e.g. stagnancy, by-passing). 

Obviously, an experiment in which tracer is injected (as a pulse) at one point i and the 
concentration c,j(t) is measured at point j yields directly the age distribution between these 
points. The probability density a~j(t) for age t of a particle at j that entered the system at i, is 
given by: 

c,j(t) p,j(t) [38] 

aij  fo~ C,(t) dt fo~ Pij(t) dt 

A sojourn time distribution which is often more interesting than the age is that of the local 
remaining life distribution. The latter is useful in comparing the flow patterns of different regions 
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of the system, like purging and back-mixing. Higher average remaining life, for example, implies 

a tendency to stagnancy. 
For any system, the probability density bi(t) for local remaining life distribution (at any point 

i) can be obtained by injecting the tracer there and measuring over all the system, b,(t) can be 
derived from the measurement without fitting to any model. It will be shown that b,(t) is given 

by: 

1 d N" C~k(t)Vk = 1 d 
b,(t) = - m - d ~  ~ m d t  M(t). [39] 

In some cases the total amount of tracer M(t) within the system can be directly measured (not via 

concentration measurements). Such experiments are used in physiology, where the total count of 
radioactive tracers is recorded for a whole organ. In these cases the remaining life distribution is 
directly obtained (model-free) from the measurement, using [39]. When the system is closed M is 
constant and the probability density b, is trivially zero. 

Let us now discuss the definition of the age and remaining life distributions on the basis of 
compartmental analysis, bearing in mind that a continuous system can be described by a network 
in which the number of vessels tends to infinity. We derive first, the local age distribution at(t) for 
a random particle at j, that is, a particle at j which could enter the system through any inlet. The 
probability Q{~ that a particle at j has entered the system at the inlet to vessel i is given by: 

WLfoPijdt W / f f  Wilpii 
Qt  = = = -  p,j dt - - - ,  [401 

~ W[ fo p,jdt V, ~, 

where use has been made of [12] and [19]. The probability density a~j(t) for age t of a particle at j 
that entered the system through i is given by [38]. Thus the probability density at(t) for age t of a 

random particle at j is: 

aj(t) = ~ Q~jc~,j(t) = ~1 "7" = 1 • , ~'. W/p,i w/c,i(t) [41] 
' m i 

and [36] is obtained as a special case for a single inlet system. The probability density a(t) for age 

t for a random particle in the entire system is given by: 

~. Vjaj(t) 
' - - ± 2  2 w/p,,,). [421 
Zv ,  v .  

/ 

The age distribution for any subsystem can also be calculated by [42], where the summation of 

the inflows W/includes all the inflows into this subsystem from all other regions of the system. 
We can define now the age distribution at the outlet of the system, regarding all the outlets as a 

common one: 

wj~ai(t) 
a~(t)- J 

Z WJ e 
J 

[43] 

Let us now derive some expressions for the remaining life distributions. The probability that a 
e OO particle at i will leave the system through the outlet of vessel j is p ;,{ ). 

The probability density/3~j (t) for remaining life t of a particle at i which will leave the system 
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through j is: 

1 dp,~(t) [44] fl,,(t) = , 
P ~i( ) dt 

and the probability density b~(t) for remaining life t of a random particle as i is: 

b,(t)= ~, p,~(oo)[3,,(t)= ~ .  dp,~(t) = d t  ~, w:p,,(t)= --ml ~. w:c,,(t) [45] 

where use was made of [5] and [7]. From [45] another form for b,(t)  can be obtained: 

bi(t) dt i [461 

which follows from the fact that the sum of all the transition probabilities from any point (to all 

points within the system and the outlets) is unity. Introducing [5] into [46], the probability density 

bi (t) reduces to the form [39] which is directly measurable. Finally, the remaining life distribution 

for a random particle at the inlet (when regarding all the inlets as a common one) is: 

w/b~(t) 
b / ( t )  = ~ [47] 

E W/ i 

Both the age distribution at the outlet [43] and the remaining life at the inlet [47] can be defined as 

an equivalent residence time distribution, and from [41] and [45] it can be shown that: 

a'(t) = b/(t). [48] 

Usually, a residence time distribution is meaningful for systems of single inlet-single outlet. 

However,  in many cases the boundaries of the system cannot be clearly defined (as in the case of 

some estuaries). For  such cases and for systems having multiple inlets and outlets, local remaining 

life distributions can serve to compare the nature of the purging and mixing processes of various 

regions, and an equivalent residence time distribution as defined by [43] or [47] can describe the 

system as a whole. 

Measuring b(t) or a(t) in a system with multiple inlets and outlets involves measurement of 

the total amounts of tracer in the system. Since this is often difficult, we need sojourn time 

distributions that can be obtained from more limited measurements, either at the point of 

injection or in another given region. 

Let  us first consider the case where i = j. For this case we can define a properly normalized 

probability densi ty: t  

p . ( t )  U, U,c.(t) 
- V~ p . ( t ) = - - ,  [49] ~-,,(t) = C m 

Jo p,(t) dt 

where use was made of [18]. 

"tin a closed system the integral of p,j is infinite and there is no way to obtain a proper probability density. Naor et al. 
(1972) showed that some more general distribution functions (extended distributions) can be observed for that specific case, 
which contains considerable information about the mixing process. However, if there are one or more inlets (and, therefore, 
in steady state also an outlet) the integral of p~j is finite and in this case we can normalize it to a proper probability density 
function. 



508 Y. ZVIRIN and R. SHINNAR 

Expression [49] resembles a regular residence or remaining life distribution, using U, as the 
flow rate. 7ri,(t) d t  is the probability to leave (for the last time) the influence sphere of vessel i at 
time t, given that at time zero the particle was in i. This does not mean that it stays in vessel i all 
the time: it could leave and come back many times before t. The influence sphere is not a clearly 
defined physical region but rather a region in an imaginary space related to the effect of the mixing 

processes on the probability of a particle to return to i before leaving the system. 

7r,, is a proper probability density and its advantage is the same as for regular residence or 

remaining life distributions. Namely, it presents the information in a way which is easy to 
interpret physically. Thus, for example, multiple peaks in 7r,, imply recirculation. We can also 
compute the escape probability: 

zr,,(t) 
71,,(t) - c '  ' 

1 - ] ~r. dt  
Jo 

[50] 

which provides, again, insight into the physical processes underlying the mixing. 

Let us now turn to the case where i is not equal to ]. The probability of a particle which is 
initially at vessel i to reach j between t and t + dt is a , j ( t )dt  where a,j is given by [38]. This 

probability contains very little information; however, when combined with the probability P,~ 
[19], obtained by a single additional experiment of injecting and measuring at j, much more 
information can be learned. We define the following extended probability density: 

7r,j(t)=- Ujc,~(t) p , j ( t )P, j  - a,~(t)P,j, [51] 

m fo = p,~(t) dt 

7r,~dt is the probability that a particle which at time zero is in i, will leave the influence sphere of j 
at time t. 

Both 7r,~ and P,j give important clues for an appropriate flow model. For example, in a system 
with a single outlet, even if there is backflow through this outlet, P~j is unity if j is near the outlet. 
Therefore, a measurement in j gives a proper net outflow and 7r,j can be evaluated as a remaining 
life distribution. 

6. APPLICATION TO CONTINUOUS FLOWS--AN EXAMPLE OF A TWO-PHASE FLOW 

In the previous sections we have discussed the use of tracers to investigate mixing processes 
in flow systems from two different approaches. One is the estimation of model parameters from 
the results of tracer experiments. This approach is useful when we have a good knowledge of the 
underlying transport processes and can, therefore, set up a reasonable model. 

The second approach is the evaluation of model-free parameters which are directly obtained 
from the measurements. In this way we can learn about the behavior of the system regardless of 
any model; moreover, we can gain information about the reliability of models describing the 

system or get a better feeling as to what a suitable model should be. 
The definitions of such model free parameters as the local purging rate, the remaining life 

distribution and in principle the local Peclet number, were based on compartmental analysis. 
However,  as mentioned on several occasions through this article, the methods discussed here are 
mainly intended and apply to continuous systems. 

In this section we treat an example of a tracer experiment in a continuous system and discuss 
the application of the two approaches to it. Consider the system described in figure 6. The flow 
system consists of two phases: I is a well mixed vessel having volume V and a net flow rate W 
through it; II is a one-dimensional diffusional component, having diffusion coefficient D, 
cross-section area A and length L : phase II is well mixed normal to the direction of Z. The two 
phases are coupled via a mass transfer coefficient h. This case was treated by Shinnar et al. (1972) 
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Figure 6. Two-phase flow--a diffusional model. 

and we briefly recount their solution. The equations and boundary conditions for an experiment 

in which an amount m of tracer is injected as a pulse at time t = 0 at phase I are: 

~CII(Z, t) _ n ( 9 2 f l l ( Z ,  t )  
3t - 1 "  Oz 2 0 ~< Z ~< L ,  [52a1 

t g c t i ( L ,  t )  _ 0 ,  [52b]  
aZ 

_ DOcH(O, t)  = h [ c , ( t ) -  cii(O, t)], [52c] 
aZ 

vdcij,r x = _ Wc~(t) + hA [Cll(0, t) - c,(t)], 
dt 

[52d1 

m [52e] c,(O) = v '  

cn(Z, O) = 0 0 <~ Z <~ L. [52f] 

The above equations can be solved to yield the concentrations c , (Z ,  t) and ci(t); the latter is 

also equal to the concentration at the outlet. Some curves of cd t )  are plotted in figure 7, where 

and ~ are defined in[54]. 
We can now ask what would we learn from additional experiments. For our purpose the 

Laplace transforms Ei(s) and ~II(Z, s) of the concentrations at I and II (respectively) contain 

sufficient information and we do not need the complete solutions of ci( t)  and ci~(Z, t).  The 

Pii 

I i  r=l - - - - ' r ]  =O 

0 2 4 
w__ t 
V 

Figure7. Thetransitionprobabilityp~.~ = Cl.~VIm for thetwo-phaseflowmodel(figure6). 
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solutions for 6~(s) and e l i ( Z ,  S)  for injection at the inlet are given by the following dimensionless 
form: 

where 

tanh ~/[(r/£)s] 1 - "  ~I(s)=Wc'(s)=II+s+ 1 +~tanh~/[(r/ ,)s]] 

W(, i ( s )  = exp (V'[(r/~)s]) - exp [V'[(r/~)s](2 - z)] 
m 1 + s - (l/~)v'(r/~)[1 - exp (2~/(r/~:))] ' 

1 + exp [2~/(r/~:)] - (~:/rt)[1 - exp (2v'(r/~¢))] 

[53a] 

[53b] 

Z LA DA hA 
z = ~ - ;  r = ~ - - ;  ~ = W L ;  "O=--W " [541 

and s is based on t* = (W/V)t .  The zeroth moment of the concentration at phase I yields the flow 

rate W, as can be seen from [53a]: 

fO ~ 

m 
(]-/~I)O = CI d t =  lim 6~(s) = W ,  [55a] 

s ~ 

which is an obvious result. 
As mentioned above, an accurate measurement of ct would theoretically allow determination 

of h, D and W. As the first moment is simply the average residence time, we need the second and 
third moments to estimate h and D: 

~_ V (Iz,), = (V + LA )/W = ~ (1 4 r) = i-, [55b] 

(v)2[ .2 .r2 rr21 W(~,)2 = - ~  2 ( l + r )  + z ~ - + ~ f f j = w 2 + ( i - )  :, [55c1 

~-(/zl)~ V 3 4 1 
( ~ )  [ 6 (1+r )3+  1 2 r 2 ( l + r ) ( l + ~ ) + r 3 [ 6 - - ~ +  4-~-+~-~)] 

\72 ~n [55d] 

The difficulty is that (/~)z, (/xt)3, and e v e n  (~.Ll) I are hard to measure accurately, especially if h or 
D are very small or very large. Indeed, from figure 7 it can be seen that the curve of f(t) for ~ = 0 
is indistinguishable from that for ~0 = 0.1, and the same is true for any curve where "0 > 10. In the 
latter case the system is nearly a stirred tank and we can get very little help from additional 

experiments. 
The zeroth moment of the response in phase II at any point z will give, again, m / W. The first 

moment is: 

(/~lI)l (1 +r)+~--+--;-;Z . [561 

Thus, two measurements at different points in phase II can yield both h and D from the first 
moment, which is easier to measure than higher moments. 

If h is small this method will not work as c.(t) will be too small. In this case an additional 
injection in II followed by a measurement in II will give the desired parameters more accessibly. 
In order to find the response to such an injection, we have to solve equations [52] with the initial 
conditions: 

c,(0) = 0, [57a] 
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m 
cH(z, O) = -~ 6(Zo) [57b] 

where 6( ) is the Dirac delta function. 

Again, we need only the Laplace transforms CI(S) and ~li(z, s) which are given by: 

ECII(Z, S) = ~ Y3 exp (X/I(r/~)]z) + Y,  exp (-V[(r/~)]z)  
m [Y,  exp (X/[(r/~)]z) + Y2 exp (-~/[(r/~)]z) 

O~Z~Zo 
[58a] zo<~z<~l, 

w / :  
" d,(s) = Y3 + Y 4 - ± x / ( r / ~ ) ( Y s -  Y4) [58b] 
m 

where: 

~[(1 + s) (1 + (~:/n) v '[(rff)])  + ~X/[(r/D]] 
Ys = (1 + s) {1 + exp (2X/[(r/~)]) - (~:/'0) X/[(r/~)] [! - exp (2V'[(r/~)])]' [59a] 

Y. = Y3 exp (2~/[(r/~)]) - 6, [59b] 

1 1 
Y, = Ys 2 ~V'[(r/~:)] exp (-~/[(r/~)]Zo), [59c] 

Y2 = Y, exp (2V'[(r/~)]), [59d] 

1 1 
= 2 £[(r/~:)] {exp (~/[(r/~)]Zo) + exp [2~[(r/~r)] (2 - zo)]}. [59e] 

From the above solution the zeroth moment of the concentration ¢nu(t) at any point 
0~< z ~<Zo is found to be: 

y: m( ) c . . ( z ,  t) dt = lim g.(z, s) = - ~  1 + 1 + z • ~ -~ -~ O<~z<~zo. [60a] 

The first moment at z = Zo is given by: 

m V [ ( I +  Z o ( 1 - ~  Zo) fo®tc~H~(z,t)dt =-~- -~  r ) + ~ + ~  

2(¢/rl) + rzo + 2zo + (1/6) (r/¢)Zo s + (r/~)zo 2 ] 
2((~/~) + ~ + Zo) 

[60b] 

Thus, the parameters h and D can also be estimated from the zeroth and first moments of the 
response c~H(z, t). Measurements at several points in II yield all the information from the zeroth 
moment only. As mentioned before, the accuracy is then much higher. From the curves of the 
concentration histories c,, .(t)  and Cni(t) in figures 8 and 9, it can be seen that the difference 

between curves for various values of "0 (especially for small 71) is much larger than for the 
inlet-outlet experiment (figure 7). 

Let us now evaluate the local purging rates, Peclet numbers, and remaining life distributions 
in the system described by figure 6. 

The purging rate in phase I (the mixed vessel) is, according to the definition [20], equal to the 
flow rate W: 

UI = W [61] 

because the probability of a particle at the (single) inlet to pass through phase I is unity. In phase 
II the purging rate U .  varies along the distance z. It can be measured directly by injecting tracer 
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Figure8. Thetransitionprobabilityp.j = ¢n.iV/m forthetwo-phaseflowmodel(figure6). 
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Figure9. Thetransitionprobabilitypu,~ = c..iiLAIm forthetwo-phaseflowmodel(figure6) 

at any point z and recording the resulting concentration history there (see [17]): 

m 

UII(Zo) -- fo ~ CIl(Zo, t) dt 
[621 

In order to obtain the variation of U,, as a function of z, many such experiments have to be 
carried out. If the system parameters are known, the purging rate U, , ( z )  can be calculated by [62] 
and [60] using the fact that Zo is arbitrary and, therefore, can be replaced by z: 

U,,( z ) _ 

W 

1 1 
W W z  1 1 " 

1 
[63] 

Thus, from the measurements of the purging rates in phase II, the system parameters can be 
evaluated. 

The variation of the purging rate in phase II is shown in figure lO. 
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Figure 10. Variation of the purging rate and the Peclet number along Phase II. 

Several special cases are of interest. Consider first the case where both h and D tend to 
infinity. Both phases then become together a single well-mixed vessel and the purging rate tends 
to W. 

When D -~ ~ but h is infinite, phase II becomes a well-mixed vessel and the purging rate is 
then uniform: 

U I I  1 
-W = 1" [64l 

1 + -  

Finally, when D is finite and h tends to infinity, the purging rate reduces to: 

U I I ( Z  ) - -  1 1 

- -  Z 
W I + A ~  1+~ 

[65] 

and there is no abrupt change of U across the surface between the phases. 
The equivalent Peclet number p(z )  at any point z is found from [33]: 

p(z)  = U ( z ) L  1 
A D  ~(1 + l + ~ z ) "  

[66] 

The curve in figure 10 describes, then, also the variation of p(z) (when scaled properly by £). 
The local remaining life distribution b, (t) at any point can be obtained by injecting the tracer 

there and measuring at the outlet (or phase I) or by measuring everywhere (see section 5). For phase 
I, b,(t) is identical with the residence time distribution as explained above: 

f ( t )  = b~(t) = ~Cl.i(t). [67] 

The average and variance of the distribution are given by [55b] and [55c]. 
The local probability density for remaining life for phase II is given by: 

b (z, t) = W c z , (  t ). [68] 

Thus, the curves of ¢]ix(t) in figure 8 also express the remaining life distributions (when scaled 
properly). 

Using [58] and [59], the following is obtained for the average and variance of b(z, t): 
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V [ ( l + r ) +  r r ( z - Z 2  
t]~,(z) = - ~  ~ + ~  ~-)J,  [69] 

V 2 r 2 2 r  2 2 / r \ 2  2 r 2 1 (r•2z2 r 2 

It can be seen, again, that when there are no resistances (7,~-- '~) the system can be 
considered as one mixed vessel and the remaining life distribution for II becomes equal to the 
residence time distribution. 

Let us discuss now the problem of interpreting the results of tracer experiments in the system 
when we have no a priori knowledge about the nature of the flow in it. The model-free 

parameters defined in the previous sections are useful then. Suppose that we can perform several 

experiments in which tracer is injected at any point (i) and the resulting concentration history is 
measured there. The local purging rates U, and the local sojourn time distributions 7r,, (t) are then 
directly obtained from the measurements, by [17] and [49]. 

Valuable information about the system is gained from the spatial distribution of U, (and ~r,). 
For example, uniformly of the purging rate in region I implies that it can be considered as a mixed 
vessel; if U is equal to the total inflow rate W (measured by the inlet-outlet response), then all 
the flow passes through I and there is no parallel flow through II only. The fact that I is well mixed 
can also be discovered by the uniformity of the responses there to injection of tracer at II. 

If the purging rates at phase II are found to be uniform laterally (at points with the same z), 
the assumption of strong mixing in that direction is justified. An abrupt change (discontinuity) of 
U indicates a strong resistance which may be due to an inter-phase surface. 

The local transition probability of 7rjj (see section 5) contains some additional important 
information. Just the fact that it is monotonous shows that there are no recirculation processes in 
phase II and as U(z)  decreases with z, a diffusional process might be a suitable model. 

Similar conclusions can be deduced from the local remaining-life distributions obtained by 
injecting at these points and measuring at the outlet (see section 5). 

It is noted that such detailed results cannot be obtained by the simple experiment of injecting 
at the inlet and measuring at the outlet. For example, the residence time distribution might detect 
several types of stagnancies, especially by the behavior of the tail. However, very small and very 
large stagnancies are hard to detect in this experiment: the former because its effect will be 
negligible at the outlet, and the latter because the time scale of all the experiment is smaller than 

that for the stagnancy. 

The equivalence of  compartmental  and diffusional models 

Until now we have described the system by a diffusional flow model governed by [52]. There 
is, however, one serious disadvantage in this representation: partial differential equations are 
much harder to solve when dealing with complex chemical reactions or other added processes 
such as coalescence. In these cases we would prefer simple flow models consisting of a network 
of a small number of well-mixed vessels which contain all the basic physics of the real flow. 

To find such a proper model for the flow given by [52] we can choose the network described in 
figure 11 and the problem is to find the number of mixed vessels as well as the connecting 
flowrates. We can do this by demanding that each vessel will have all the local mixing properties 
of the real flow; namely, the same purging rate and the same local Peclet number. 

The flow rate Wt is determined by the condition that it will be equal to the rate of interchange 
at the interface: 

W, = hA. [71] 

The other flow rates Wj are free parameters as are the volumes Vj(j = 1, 2 . . . . .  n). 
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Figure 11. A model of well-stirred tanks representing the two-phase flow of figure 6. 

The purging rate U~ in vessel i is found from [20]: 

Ui = W P , i  [72] 

where 

P .  = P I I P n P 2 3  . . . P~- , . i  [731 

is the probability of a particle at I to pass through vessel i. The first two probabilities are given by: 

P n  = W , / ( W  + W , ) ,  [74a1 

P12 = W2 W1 + W2 W, +'--~ 

and the probability P~_,.~ is: 

W/-1 --1 
[74c] 

Thus, the purging rate at vessel i [72] depends on all the flow rates connecting the vessels 

between I and i. 
If all the flow rates Wj are taken to be the same (and equal to W2), [74c] reduces to: 

1 
Pi-l.~ - [75] 

2 - P~-2.i , '  

and by a series of regressions, the produce P 2 3 P 3 4 . . .  P,-,., can be expressed as follows: 

P : ,  = P 2 3 P 3 4 . . .  P i - , . ,  = [i - 1 + ( i  - 2)Plz]-'. [76] 

Introducing [76] and [74b] into [72] the purging rate U, is found to be: 

_I, = W 

l + - ~ t + ( i - 1 )  w2W" 
[77] 
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When increasing the number of vessels n indefinitely and approaching the limit of the continuous 
system described by [52], the flow rate W2 becomes related to the diffusion coefficient D by: 

A D  
W 2 = n - -  E -  [78] 

(see also section 4). It is seen that the purging rate reduces then to that given by [63], where 
z = (i - 1)/n. 

The turnover rate at vessel i is, according to [25]: 

T, = W~ + W,+,. [79] 

Thus, the local Peclet number p, for vessel i is given, according to [31], by: 

2 L A  Ui 
O, = V, W, + W, . ,  [80] 

where U~ is given by [72]. When all the flow rates Wj( j  >1 2) are equal to W2 the purging rate is 
given by [77] and the Peclet number is: 

L A  1 +~-~ ,+( t - l ) -~2) ]  . [81] 

The limit of n ~ ~ leads to the continuous diffusional description. Taking then vessels of equal 
volumes, L A / V ,  = n, and introducing [71] and [78] into [81], the local Peclet number reduces, 
indeed, to the form [66]. 

We have concluded that the model of a cascaded network of mixed vessels can represent the 
diffusional flow: when the number of vessels tends to infinity both the local purging rate and the 
local Peclet number approach the proper limit. 

Moreover, for a large number of vessels, the Peclet number ([81] or [66]) has exactly the same 
form as the purging rate ([77] or [63]) except for a constant factor. It means that for large n, by 
choosing W_, to fit the spatial distribution of the purging rate within a certain accuracy limit, the 

local Peclet number at each vessel is determined within the same limit. 
For a model consisting of a small number of vessels, n is determined by the desired accuracy 

limit and the maximum relative variation of the purging rate (U(0) -  U ( L ) ) / U ( L ) ,  or that of the 
Peclet number (usually by the former which is more directly accessible from measurements). An 
optional method for the modelling is letting W, and V, vary and estimating them by fitting with 
the measured U~ within the desired accuracy limit. Because of the close resemblance between the 
forms of Uj and p~, the deviations in the latter will not be much larger. However, as shown in the 
following example, even if we choose equal-size vessels and allow only W; to change, the results 
for the purging rates and the Peclet numbers agree with those of the continuous system quite 
well. 

The accuracy reached by the same model for the average and variance of the local 
remaining-life distribution is higher than for U and p, because the details of the modelling in 
phase II have less effect on the response at the outlet. The residence time distribution (given by 
the response at the outlet to injection at the inlet) is even less affected by these details. 

As an example we choose 4 vessels of equal volume to represent phase II for the case 

"O = ~ = 1, r = 1. In this example the purging rate Uj is fitted to U ( z )  from [62] at the center of 
each vessel, and Wj is determined by [72]-[74]. The results are listed in table 2, which also 
includes the results for the Peclet numbers and the remaining life distributions. From the results 
it can be seen that a model of four equal-sized vessels represents the continuous system within a 
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Table 2. Modelling the continuous system with r = 1, ~: = 1 and r/= I by four mixed vessels (see figure 11) 
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Z 
z = -  0 

L 
i 
U(z)/W = p(z) 0.5 
U, IW 
WdW 
Max. deviation in U 
p~ 
Max. deviation in p 
W- 
V t,~(z) 3.0 

W -  v(t.), 
Max. deviation in [, 
T~(z) = cr~(z)/(?,)~ 
(T,~), 
Max. deviation in 3,, = 

(0.125) 0.25 (0.375) 0.50 (0.625) 0.75 (0.875) 

1 2 3 4 
0.470 0.445 0.421 0.40 0.381 0.363 0.348 
0.470 0.421 0.381 0.348 
0.890 4.05 4.01 4.09 
6.0% 5.4% 5.0% 4.5% 
0.464 0.418 0.376 0.340 
7.2% 6.1% 6.0% 6.3% 

1 

0.333 

3.22 3.37 3.47 3.50 

3.12 3.31 3.43 3.49 

4% 2.8% 1.8% < 1% 
0.92 0.81 0.75 0.71 

0.86 0.78 0.73 0.70 
6.5% 4.0% 2.8% 1.4% 

w -  t~, = 2; 3'f = 1.66 (continuous system); 3,12 = 1.67 (model) 

0.69 

very reasonable accuracy. Also, it can be seen that the values of W2 are very close, which 

indicates that a model of equal-sized vessels with equal inter-flow rates will be a good 

approximation for any practical application. 
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APPENDIX A: DETERMINATION OF THE n.n MATRIX OF FLOW RATES 
BYn TRACER MEASUREMENTS 

Consider a tracer experiment in which tracer is injected into the qth vessel and concentration 
histories are recorded in all n vessels. The vector p~=(pq, ,pq2 . . . . .  pqo) of transition 
probabilities [13] 

Po' = ~'k A~'e"~' i = 1,2 . . . . .  n [A-l] 

is then found. This means that in principle the eigenvalues A, . . . .  ,h, can be evaluated along with 
the n 2 coefficients k • A q~ (t, k = 1, 2 . . . . .  n). Using the definition [14] of A ~,, multiplying both sides 
by S, ~ and summing over the index i, the following is obtained: 

E j k = ~  S~ A ~ = ~'~ SqkR~kS~ j = g)kiS~ k &~6kjSj 
i i 

[A-2] 

where use was made of the orthonormality of S k and W. Equations [A-2] can be rewritten in the 
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following form: 

~] (A~,-  6,q6ki)SJ = 0 j, k = 1, 2 . . . . .  n. [A-3] 
i 

The last set consists of n z linear equations for the n 2 unknowns S, s. By taking first j = constant we 

can solve the n equations for the unknowns Skj (k = 1,2 . . . . .  n) and then proceed to the 

following superscript. The corresponding values of the vectors R k are obtained now from [14]. 

Once all the vectors R and S are known, the matrix w can be obtained from [15]: 

w,s = ~ hkS, kRj k. [A-4] 
k 

The flow rates can now be obtained as follows: all the modified flow rates w~ (i # j) are given 

by the off-diagonal elements of w. The actual flow rates W~, the outflow rates Wi" and inflow rates 

W[ can be calculated by [I]-[4], provided the volumes are known. 
The same results can also be obtained by injection of the tracer into each of the vessels and 

measuring the resulting concentration history in one of them or by some other experiments of n 

separate measurements. Thus, it follows that n tracer measurements (concentration curves) are 

sufficient, in principle, for the identification of all the parameters needed for a compartmental 

model consisting of n vessels. 

APPENDIX B 

We develop here the expression [19] for the probability P,j of a particle at vessel i to pass (at 

least once) at vessel j. 
Consider an (imaginary) experiment in which tracer is introduced as a pulse at t = 0 in vessel 

m. Without loss of generality, we seek the probability P,,,, where n is also the number of vessels. 

Assume that every tracer particle is tagged and counted (imaginarily) when it first enters n. The 

probability Pro, is then the ratio of the total number of these particles to the total number of 

particles introduced into vessel m. The fraction of particles at vessel i at time t is the transition 

probability p,,~ (t). Denote by x,,~ (t) the fraction of tagged particles at the same site and time. The 

equations and initial conditions for xm,(t)  are similar to those for the transition probabilities 

(section 2): 

dx,.~ = ~ 
dt  Xo, kWk~ i = 1, 2 . . . . .  n -- 1, 

k = l  

x ~ . ( t ) = p ~ . ( t ) ,  

x,.,(0) = 0 i = 1, 2 . . . . .  n. 

[B-l] 

[B-2] 

[B-3] 

Using [B-2], [B-I] can be rewritten in the form: 

Id~l X r a  i n -- 1 

dt  = ~ X,.EWk~ + p , . .W . .  
k = l  

[B-41 

Denote now the fraction of untagged particles at vessel i at time t by 0,,~(t): 

0,.~ = p,,~ - xm~ i = 1, 2 . . . . .  n. [B-5] 

The equations and initial conditions for 0,,~ are then derived from [B-I]-[B-4], [8] and [10]: 

dotal n--1 
dt  - ~ O,.kWk, i = 1, 2 . . . . .  n - 1. [B-61 

k = l  
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0,.,(0) = 6,,. [B-7I 

The solution for the last set of equat ions can be found in the same way as the solution for  the 

transit ion probabil i t ies  (see sect ion 2). The eigenvalues are obviously  different because  here the 

generator  matr ix  is of the order  n - 1 and not n as was the case in section 2. 

The probabi l i ty  Pro, is given by the following: 

n 1 f ~  Pro,, = ~ wk. Omk(t) dt. [B-8] 
k = l  I 

Introducing [B-5] into [B-8] the following is obtained: 

, , ,fo P~.. = wk. (p.,k - x.,k) dt  = wk. pink dt  - w.. pro. dt  - ~ wk. x,.k dt  
k = l  k ~ l  k= l  

= - w.. pro. dt  - ~ wk. x.,k dt  [B-91 
k=!  

where the last relation was obta ined f rom [B-8], bearing in mind that  m ¢ n. Observing now [B-4] 

it can be seen that  the fol lowing relat ionship holds:  

jo x,~k dt = K~ p,,,~ dt. [B-10] 

Thus [B-9] yields the fol lowing for  the probabi l i ty  P,~. : 

P,.n =K.  pm. dt 

._, [B-Ill 
K . =  - (w, , .  + ~ 

where K .  (as also K~,) is a constant  depending on the parameters  W,j and most  important ,  does 

not depend on m. Since m and n are arbi t rary indices,  [A-11] holds for  every pair  of indices i, j :  

P~ = K~ p~j(t) dt. [B-12] 

K~ can be evaluated f rom the fol lowing identity:  

fo Pjj = Kj p~j(t) dt = 1. [B-13] 

Thus 

fo ~ p,;(t) dt  
Pi j  = 

fo P~(t)dt 
[B-141 


